
UNCLASIFIED VIASER ..ODPY- FOR REPRODUCTION PURPOSESO
SECURITY CLASSIFICATION OF THIS PAGE-

RVPR 0 UMENTATION PAGE
a. REPORT SECURITY CLASSIFICATION EL1C T 1l. RESTRICTIVE MARKINGS

U~izalm DISTRIBUTION/ AVAILAIUITY OF REPORT

Approved for puLlic release;
distribution unlimited.A D -A 225 898 MBER(S) S R . MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGAIZATION b.OFFICE SYMBO0L 7a. NAME OF MONITORING ORGANIZATION
Center of Excellence in AtI (Wpkh)
University of Pennsylvania J_ ______ U. S. Army Research Office

fit ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)
Dept. of Computer & Information Science P. 0. Box 12211200S 33rd StreetReerhTinl

Pak NC 279 21Philadelphia, PA 19104-6389ReerhTinl Pak NC 27921
S.. NAME OF FUNDING /SPONSORING B b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERORGANIZATION Of Wkib

U. S. Army Research Office JIPY4AL 03 -F&'- C -0o 36
Sc- ADDRESS (City. State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PRGA PROJECT TASK WORK UNITP. 0. Box 12211 PROGEM NO. NO. NO. IACCESSION NO.Research Triangle Park, NC 27709-2211EEMNN.

11. TITLE (include Security Cainfication)

The Relevance of Connectionism to AI: A Representation and Reasoning Perspective
(MS-CIS-89-05)

12. PERSONAL AUTHOR(S)
Lokendra Shastri

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) rS. PAGE COUNT
Interim technical FROM - TO- January 1989 35 " 1 1

16.SUPLEENAR NOATONThe view, opinions and/or findings contained in this report are thoseof, he auth r(s) and should not be const dgi as an Rfficial D a~rtment of the Army position,
17. COSATI CODES IS. SUBJECT TERMS (Catnue on teworn if necemvry and identify by block number)

FIEL GRUP SB-GOUP Connectionism, knowledge representation, reasoning

19. ABSTRACT (Cotnue an tvwrse if necessary and Wdenti by block number)

SIn this paper it is argued that not only is connectionism relevant to knowledge representation and reasoning,but it also provides an ideal computational architecture for intelligent systems. To justify this claim. certain criticalfeatures that any computational architecture capable of supporting intelligent behavior must possess are identified,and then it is shown that the core features of connectionism correspond exactly to these features. It is also arguedthat connectionism cannot be viewed merely as an implementation paradigm because its core features influence ourconceptions of representation and reasoning in important ways: designing connectionist models for solving complextasks leads to the identification of constraints on the conceptual structure. The above issues are discussed withreference to two connectionist systems that perform certain reasoning tasks with extreme efficiency.

20. DISTRIBUTION / AVAILABIUITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
O3UNCLASSIFIEDAJNUMITED D3SAME AS RPT. (3 OTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Inclue Area Code) I22c. OFFICE SYMBOL

00 FORM 1473.4ea A 63 APR edtion may be used untl exhausted. SECURITY ASIFICATION OF THIS PAGE
All other editions at* obsolete. UNCLASSIFIED

/S

UNCLASSIFIED
sUCUN? CLMSIPIICATIS OF THIS PAGE

UNCLASSIFIED
SECURITY CLASSISICATION OP THIS PAGE

THE RELEVANCE OF
CONNECTIONISM TO Al:

A Representation and Reasoning
Perspective

Lokendra Shastri

MS-CIS-89-05
LINC LAB 140

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104

September 1989

ACKNOWLEDGEMENTS:
This work was supported by NSI' grants IRI 88-054465, MCS-8219196-CER, MCS-83-05211,
DARPA grants N00014-85-K-0018 and N00014-85-K-0-807, and ARO grant ARO-DAA29-
84-9-0027.

. m m I i li I H

The Relevance of Connectionism to Al: A

Representation and Reasoning Perspective

Lokendra Shastri*

Computer and Information Science Department

University of Pennsylvania

Philadelphia, PA 19104

Abstract

It is generally acknowledged that tremendous computational activity underlies some of

the most commonplace cognitive behavior. If we view these computations as systematic

rule governed operations over symbolic structures (i.e., inferences) we are confronted with

the following challenge: Any generalized notion of inference is intractable, yet our ability

to perform cognitive tasks such as language understanding in real-time suggests that we
are capable of performing a wide range of inferences with extreme efficiency - almost as

a matter of reflex. One response to the above challenge is that the traditional formulation

is simply inappropriate and it is erroneous to view computations underlying cognition as
inferences. An alternate response - and the one pursued in this paper - is that the traditiona!

account is basically sound: The notion of symbolic representation is fundamental to a

computational model of cognition and so is the view that computations in a cognitive system

correspond to systematic rule governed operations. However, there is much more to a

computational account of cognition than what is captured by these assertions. What is
missing is an appreciation of the intimate and symbiotic relationship between the nature of
representation, the effectiveness of inference, and the computational architecture in which

the computations are situated. We argue that the structured connectionist approach offers the

appropriate framework for explicating this symbiotic relationship and meeting the challenge

of computational effectiveness.

*Supported by NSF grants IRI 88-05465, MCS-8219196-CER, MCS-83-05211, DARPA grants N00014-85-K-
0018 and N00014-85-K-0807, and ARO grant ARO-DAA29-84-9-0027.

1 Introduction

It is generally acknowledged that tremendous computational activity underlies some of the most

commonplace cognitive behavior. For example, language understanding - a task that we perform

effortlessly most of the time - requires solving several subtasks such as recognizing phonemes,

disambiguating word senses, parsing, resolving anaphoric references, imposing selectional restric-

tions, recognizing speaker's plans, and performing various predictive and explanatory inferences.

These tasks are fairly complex and in turn require the integration of a wide range of knowledge

pertaining to phonetics, prosodics, syntax, semantics, pragmatics, discourse structure, and that

nebulous variety conveniently referred to as common sense knowledge.

Within a traditional formulation of AI and cognitive science most of the above computations

are viewed as inferences, i.e., systematic rule governed operations over symbolic structures'.

However, if one accepts such a view of cognition one is immediately confronted with the

following puzzle:

Any generalized notion of inference is intractable, yet our ability to perform

cognitive tasks such as language understanding in real-time suggests that we are

capable of performing a wide range of inferences with extreme efficiency.

One response to the above puzzle is that the traditional formulation is simply inappropriate

ani it is erroneous to view computations underlying cognition as systematic rule governed

operations over symbolic structures.

An alternate response - and the one pursued in this paper - is that the traditional account

is basically sound: The notion of symbolic representation is fundamental to a computational

model of cognition and so is the view that computations in a cognitive system correspond to

systematic rule governed operations. However, such an account is grossly incomplete: There is
much more to a computational account of cognition than what is captured by these assertions.

What is missing is an appreciation of the intimate and symbiotic relationship between the neture

of representation, the effectiveness of inference, and the computational architecture in which
the computations are situated. We argue that the structured connectionist approach offers the

appropriate framework for explicating this symbiotic relationship and meeting the challenge of

computational effectiveness.

'This is not to say that inference and systematic rule governed operations are the same - inference presupposes
the existence of some semantic justification that dictates which operations constitute correct inference. In the present
context however, the nature of inference is not an issue and what is being said applies to deduction, probabilistic
inference, default reasoning, analogical reasoning, etc.

2

2 Reflexive inference

To underscore the extreme efficiency with which certain inferences need to be drawn in order
to support cognitive behavior in real-time, we label such inferences reflexive. In the following

section we characterize reflexive inferences in terms of their time complexity but informally,
these inferences are performed extremely fast - in the range of a few milliseconds to a few

hundred milliseconds, they are computed effortlessly, spontaneously, and without deliberation,
and the agent does not even become aware (conscious) of the steps involved in arriving at the

conclusion. It is as if these inferences are a reflex response of the agent's cognitive apparatus -

hence the name, reflexive inference.

Reflexive inferences may be contrasted with reflective inferences which are relatively slow,

and deliberate. In particular, when performing reflective inferences the agent is aware (conscious)

of the reasoning process. The surface complexity of the task is not a good indicator of the type

of reasoning. Thus a simple task such as "add 391 and 427" requires reflective inferences2

whereas a complex task such as understanding spoken language (under ordinary circumstances)

only requires reflexive inferences.

It may be suggested that reflexive inferences constitute an unusual sort of reasoning, and
hence, need not be accounted for in a first pass at developing a computational model of cognition.

However, far from being unusual, reflexive inferences make up an overwhelming fraction of all
the inferences carried out by human agents (to wit language understanding, vision, and common

sense reasoning) and therefore an account of reflexive inference should play a central role even
in a preliminary computational model of cognition. At stake here are not efficiency, architecture

issues, or implementation detail but rather the very viability of the model.

There is one other point that must be clarified. It may be claimed that 'inferences' character-
ized as reflexive inference are really not inferences. They are either table look-ups or single step

inferences with no chaining (i.e., they either correspond to a simple retrieval or can be derived

by a single rule-application without any chaining). As the following example will illustrate,

such a view underestimates the richness of reflexive inference3 . Consider a person reading a
variation of the Little Red Riding Hood (LRRH) story in which the wolf intends to eat LRRH in

the woods. The reader is at the point in the story where the wolf, who has followed LRRH into r
the woods, is about to attack her. The next sentence reads: "The wolf heard some wood cutters
nearby and so he decided to wait." It seems reasonable to claim that the reader will understand El
this sentence spontaneously and without deliberate thought. However, a careful analysis of this -

2On the other hand adding two single digit numbers may correspond to a reflexive step. -/
3This example is based on (Schubert 89]. A vmLA1it y Cdes

. *v c a

sentence makes it apparent that even though the reader does not become aware of it, under-

standing this sentence requires fairly elaborate reasoning. This reasoning may (very) informally

be described as follows (the 'rules' are in parentheses): To eat LRRH the wolf will have to

approach her (because to eat something you have to be near it), if the wolf approaches LRRH

she will scream (because a child is scared by an approaching wild animal), if LRRH screams,

the wood cutters will hear her (berause a loud noise can be heard at a distance and screaming

generates a loud noise), if the wood cutters hear the scream they will know that a child is in

danger (because a child's screaming suggests that the child is in danger) -e wood cutters will

come to the location of the scream (because people want to protect children in danger and in

part, this involves determining the source of the danger), when the wood cutters see the wolf

they will try to prevent it from attacking LRRH (because people want to protect children) in

doing so the wood cutters may hurt the wolf (preventing an animal from attacking a child may

involve physical force ...) so the wolf will decide to wait (the wolf does nct want to get hurt).

Clearly, the above chain of reasoning does not constitute a 'canned' response and in addition

to the retrieval of meanings of lexical items, parsing, and resolution of pronominal reference,

something equivalent to it must be taking place during the understanding of the sentence in

question.

2.1 Time complexity of reflexive inference

Assuming that the number of 'rules' and 'facts' required to encode all relevant aspects of the

domain of common sense will easily run into the millions4 , the extremely tight constraint on

the time available to carry out reflexive inference entails that the running time of any inference

algorithm for performing reflexive inferences can be no worse than sublinear in the size of

the knowledge base. Such a tight constraint introduces a very strong notion of computational

effectiveness. Typically, a polynomial time algorithm is considered to be quite 'tractable' in the

context of knowledge representation and reasoning [Levesque 89J.' However, even a polynomial

time algorithm is not good enough for modeling reflexive inference - an order n2, or even an

order n algorithm would take far too much time to be of any relevance.
4The choice of terminology is not critical and the reader may replace 'rules' and 'facts' by scripts, schemas,

frames, constraints, or whatever that might happen to be the readers' favorite way of describing a chunk of

knowledge.
5in addition to requiring polynomial time, most formulations of limited inference in artificial intelligence preclude

the use of modus ponens and chaining thereof rLakemeyer 87] [Frisch & Allen 82]. We consider such an exclusion
to be unwarranted: as evident from the LRRH example discussed above, the use of chaining underlies causal and
predictive reasoning, and therefore, must be included in an account of reflexive inference.

4

3 Towards a computational account of reflexive inference

In this section we outline how one can systematically work towards a computational account of

reflexive inference. We conclude that a computational account of reflexive inference is one in

which inferences can be drawn in a constant number of passes (preferably one or two) of flow

of information in a directed acyclic graph where each node in the graph is a processing element

and each arc is a hardwired link. This assertion - though straightforward - has a significant

impact on the nature of representations and leads to the identification of important constraints

on the conceptual structure.

In the following discussion we will often allude to the following three points. These points

may be obvious but are, nevertheless, stated here because they are critical to our argument.

1. The notion of a representation is meaningful only in the context of the operations it is

capable of supporting. In the case of knowledge representation, any representation must

be accompanied by a specification of the retrieval and inferential operations it is expected

to support. Unless this is done, one cannot establish the correctness of the representation

- let alone judge its goodness.

2. Any computational model of intelligence must be computationally effective, i.e., it should

be capable of performing the specified tasks in a specified time frame (which in the case

of building cognitve agents is real-time).

3. In view of 2, the specification referred to in 1 must also specify the limits of acceptable

performance for the retrieval and inference operations the representation is intended to

support. Thus, a specification of the operations that a representation must support and the

time frame within which these operations must to be performed, together constitute the

design constraints for developing a representation.

3.1 Significance of organization: relating structure and inference

The most important step in tackling the problem of reflexive inference (and tractable inference

in general) is to:

Augment the syntax of the representation language so that the form (i.e., the

syntactic structure) of the representation directly mirrors the inferential structure of

5

the knowledge 6.

A representation that naturally provides the requisite coupling between the syntactic struc-

ture of the representation and the inferential structure of domain knowledge is a graph whose

nodes correspond to 'units' of information (constants, predicates, concepts, properties, features,

frames, or whatever) and whose arcs correspond to inferential dependencies between these units.

Adopting such a graphical representation has the interesting consequence that inference reduces

to search in a physically instantiated graph. This in itself, of course, does not solve the problem

of effectiveness because searching arbitrary graphs is a costly operation. However, once we

identify inference with graph search it becomes possible to relate the effectiveness of the infer-

ence process (search) with the structural properties of the representation (graph). For instance,

searching a tree or a directed acyclic graph (DAG) is cheaper than searching a general graph -

especially if the search can be performed in parallel. This suggests that if we desire computa-

tional effectiveness our representation should map the domain knowledge into a graph with the

following property:

Portions of the graph that are relevant to the solution of a reflexive inference

problem must be trees or DAGs.

The direct relationship between the structural properties of the representation and the ef-

fectiveness of inf2,A-;nce reduces ihc problem of reflexive inference to the problem of choos-

ing appropriate representational primitives; primitives that would impart the required structural

properties to the graph encoding the domain knowledge. Within such an approach, answers

to questions such as: "Should our epistemological primitives be undifferentiated predicates or

should we distinguish between 'concepts', 'relations', and 'attributcs' T, and "Should we use a

typed (sorted) logic or not?", depend upon - and follow directly from - a detailed specification

of the types of inferences that need to be computed reflexively.

In order to illustrate how the choice representational primitives affects the structural properties

of a representation consider two different ways of representing the following knowledge:

e Persons are non-pacifists,

e Republicans and Quakers are persons,

e Quakers are pacifists, and Republicans are non-pacifists.

6The above notion is not new and underlies semantic networks, frame languages, scripts. etc. The idea of
'vividness' [Levesque 881 is a special case of this genern) nntion.

6

First consider a 'class-only' system in which everything is expressed in terms of monadic

predicates. Next consider a 'class-property system' which makes a distinction between classes

(concepts) and properties. These two representations are illustrated in Fig. 1. Notice how the

second representation leads to a DAG whereas the first one does not. This is significant because

it illustrates that depending on the choice of representational primitives the same tnderlying
knowledge may either lead to an acyclic structure that is amenable to effective inference, or

result in a cyclic structure that is not. We are glossing over a number of problems here such as
treatment of negation, quantification, necessary versus default properties, to name a few. Our

intent here is just to point out that choosing a different set of epistemological primitives (class

on the one hand and class and property on the other) can change the structural properties of the
representation in ways that significantly impact computational effeciency.

Structural constraints required for supporting reflexive inference may not be as stringent as

they might appear. This is because the complete graph need not satisfy these constraints, only
subgraphs relevant for solving particular problems need do so. A concrete example of this may

be found in the connectionist realization of semantic networks described in [Shastri 881. There it
is shown that property inheritance may be computed extremely efficiently - in time proportional

to the depth of the conceptual structure - provided the following requirement is satisfied:

In order to inherit the value of a property P of a concept C effectively, concepts

that lie above C and that have information about P attached to them, must form a

tree

In general, information about every property is not attached to every concept and hence,
the above constraint may be satisfied for a large class of inheritance queries even though the
complete IS-A hierarchy may not be a tree. As an example, consider the IS-A hierarchy shown
in Fig. 2. Assume that the property has-belief - with values pacifist and non-pacifist - applies to

the concepts shown in the Fig. 2 and that information pertaining to this property is attached to

concepts enclosed in a dark box. Even though the concepts form a tangled IS-A hierarchy, the
inheritance question: "Is Dick a pacifist or a non-pacifist?" can be answered efficiently because

the relevant portion of the graph - consisting of all concepts that lie above DICK and that have
information about the property has-belief attached to them - form a tree (see Fig. 3).

Cyclic inferential dependencies can also be reduced by using an extremely fine-grained

decomposition of terms so as to reduce the density' of inferential dependencies in the knowledge
71.e., the ratio of the number of dependencies to the number of terms in the knowledge base. Here 'term' is

used in a general sense and includes - predicates, concepts, properties, features, microfeatures, etc.

7

base. This suggests that the number of nodes in our graphs will, in general, be extremely large

and may run into the millions for any non-trivial domain.

3.2 The Role of Architecture

Once we identify inference with graph search the significance of architecture also becomes

obvious. Consider searching a DAG with n nodes. A serial search algorithm will take 0(n)

steps to complete the search. However, if we assume that each node is an active processor that

can communicate with all its neighbors then the graph search will only take time equal to the
diameter of the graph. Thus the parallel search will be sublinear in the size of the graph. In

fact, it will be quite reasonable to assume that the diameter of the graph will only be O(loqgl).
Based on the above observation we assert that a computational account of reflexive inference

would involve

" mapping domain knowledge onto a graph whose nodes correspond to 'units' of information

and arcs to inferential dependencies between these units.

" mapping the graph onto a parallel machine by assigning a processor to each node and

creating a hardwired link for each arc.

" making appropriate epistemological and ontological choices so that the projection of the
graph with respect to a reflexive query (i.e., the subgraph relevant to solving the query) is

always a DAG so that the answer to the query can be computed in a sweep of information

flow through the parallel machine.

3.3 Other desirable architectural properties

In Section 3.1 we observed that in order to support efficient inference the relevant parts of the
graph must be acyclic, and to minimize acyclic dependencies the 'units' of information must be

extremely fine grained. As a result, the number of nodes in the graph can easily run into the
millions. The parallel encoding proposed in Section 3.2 requires that a processor be assigned to

each node in the graph. Consequently, the number of processors in the system will also run into
the millions giving rise to a massively parallel system.

Besides massive parallelism, what other desirable features should such a computer have?
First, in order to fully exploit its massive parallelism, the system must operate without a central

controller. Other features that will help in an optimal use of parallelism may be identified by
recognizing that the computing resources of any parallel system are used in two ways: i) for task

8

related information processing and ii) communication. The first of these involves computations

directly relevant to the task at hand, while the second - the use of resources for comnlunication

- constitutes an overhead that does not contribute directly to the task. Clearly, minimizing

communication costs would help in maximizing the use of parallelism.

Communication costs have two components: encoding/decoding costs and routing costs. The

sender of a message must encode information in a form that is acceptable to the receiver who

in turn must decode the message in order to extract the relevant information. This constitutes

encoding/decoding costs. Sending a message also involves decoding the receiver's address and

establishing a path between the sender and the receiver. This constitutes routing costs.

One may minimize routing costs by positing ftxed connections between processors and stip-

ulating that any message sent by a processor will always be transmitted along all - and only all

- links emanating from the processor. This would reduce routing costs to zero becau- sending

a message would require neither the decoding of an address nor the setting up of a path. Stip-

ulating fixed connections, however, would require that processing elements have a high degree

of connectivity.

But how can the decoding/encoding costs be minimized? A trivial way of reducing these

costs to zero would be to stipulate that messages shall not have any content - if there is no

content, there will be nothing to encode or decode and therefore the associated cost will be
zero. Such a suggestion may sound frivolous but one can come very close to reducing the

encoding/decoding costs to zero by restricting all messages to bc scalars, i.e., by requiring that

a message not have any internal structure, its only information content being its magnitude.

To summarize, an appropriate computational architecture for efficient inference should have

the following features:

e massive parallelism - a node for each unit of information

* no central controller

* hard wired links and a high degree of connectivity

* scalar messages with no internal structure, only a magnitude

* each processor need only compute a scalar output based on the magnitudes of input mes-

sages and transmit it to all the processors it is connected to.

The features listed above directly correspond to the core features of connectionism.

The most compelling argument put forth in favor of connectionism is that it is neurobiolog-

ically plausible. However, we arrived at the core features of connectionism - without appealing

9

to the architecture of the animal brain - by simply recognizing the characteristics of information
processing that underlies intelligence. That nature has produced a computational device with
a similar set of features is clearly not an accident. The above list of features does not make
any reference to an important feature of connectionist models, namely, learning. The arguments
offered above are independent of the question of learning and would hold even if learning were
an issue. The point we wish to make- is that there exists a strong case for connectionism even if
learning is not a major issue.

4 Impact of the core features of connectionism

In designing any massively parallel system that operates without a central controller one has to
address the problems of control and convergence. In the connectionist model we have also placed
the additional constraint that messages be simple scalars (this was done to reduce encoding and
decoding costs). On the face of it, it appears that this makes the problem of representation and
reasoning even more difficult. We argue, however, that the constraint on the nature of mes-
sages is a blessing disguise! It forces us to face up to the really hard problem in knowledge
representation and reasoning that must be addressed if we are to arrive at a computational ac-
count of reflexive inference. This problem being the determination of appropriate organizational
principles, the choice of right epistemological primitives and the indentification of important
ontological distinctions.

In this section we discuss the impact of the core features of connectionism on the nature of
representation and reasoning. This impact may broadly be summarized as follows:

* Connectionism offers an extremely efficient metaphor for reasoning where inference is
reduced to spreading activation in a parallel network. (We discussed this in Section 3.)

" Restricting messages to only being scalars entails that messages do not have any direct
symbolic content; the information content of a message is not in "What is being said?" but
rather in "Who is saying it?" 8 This requires that representations be explicit, multi-faceted,
and fine grained.

" In a connectionist system there is no distinct interpreter that mediates retrieval and rea-
soning. The connection pattern, the weights on links, and the computational characteristics

'3A message has a magnitude and therefore it actually encodes "Who is saying it and hou loudly?". The
magnitude does play an im.portant role in encoding constraint strengths and evidential/probabilistic knowledge but
is not critical to our discussion here.

10

of nodes not only represent domain knowledge but also encode the retrieval and inferential

processes that operate on this knowledge. This state of affairs forces a strong coupling

between a representation and the inferences that the representation is expected to support.

It also requires that representations be vivid and directly mirror the inferential structure of

the domain.

" Working within a massively parallel computational architecture helps in identifying novel

classes of limited inference that can be performed with extreme efficiency and aids in

discovering constraints that must be placed on the conceptual struture in order to support

extreme efficiency.

" The connectionist approach suggests alternate formulations of information processing.

Thus instead of viewing a knowledge base system as a theorem prover or a produc-

tion system, one may view it as a system that performs constraint satisfaction, energy

minimization, or evidential and probabilistic reasoning. This encourages the use of al-

ternate reasoning formalisms that have not received due attention within AI but may be

appropriate for modeling a range of cognitive functions.

4.1 Scalar messages and the absence of an interpreter

The scalar nature of messages in a connectionist network entails that the messages have no direct

symbolic content: the information content of a message is not "What is being said" but rather

"Who is saying it?"9 10.

The above restriction on the information content of a message does not pose a problem if

one is only interested in encoding associations between concepts - storing associations simply

requires spreading activation, for which scalar messages suffice. This restriction, however,

becomes critical if one wishes to represent structured knowledge and perform retrieval and

inference on this knowledge. It requires that all distinctions - no matter how subtle - must be

represented explicitly. Thus, every relevant facet of a concept and every role that a concept

may play has to be distinguished and represented explicitly. 11 It also requires that concepts be

9A message has a magnitude and therefore it actually encodes "Who is saying it and how loudly?" The

magnitude does play an important role in encoding constraint strengths and evidential/probabilistic knowledge but

is not critical to our discussion here
10The statement "messages do not have symbolic content" should be distinguished from the statement "connec-

tionist systems do not have symbolic content". In our view, connectionist systems do have symbolic content, only

the messages don't.

"This corresponds to the idc.' of "exploded cases" discussed in [Cottrell 851.

11

represented at multiple levels of granularity (resolution) including extremely fine grained levels

as well as coarse grained ones. For example, the concept "chair" must be represented at various

levels of granularity including a level of detail that would be appropriate for inclusion in the

description of a living room ("a chair"), a finer level of detail that would be appropriate if we

were describing the chair itself ("an antique leather upholstered ... "), and an even finer level

where the details about the arm of the chair would become relevant, and so on. The concept
"red" cannot be represented as a unitary concept and it must be represented using exploded

values such as "apple red", "rose red", "brick red" etc. Similarly, a role such as "patient"

must be represented in an exploded manner by positing distinct roles such as "love-patient",

"hit-patient", "give-patient", etc. In traditional knowledge based systems, such distinctions do

not have to be represented explicitly as this burden may be shifted to the interpreter which may

treat the role "patient" differently depending upon the action the role is associated with.

When knowledge is encoded in a connectionist network the usual distinction between the rep-

resentation (knowledge base) and the processes that operate on it (the inference engine) becomes

blurred: the connection pattern, the weights on links, and the computational characteristics of

nodes not only represent domain knowledge but also encode the retrieval and inferential pro-

cesses that manipulate this knowledge. In a connectionist system there is no distinct interpreter

that mediates the retrieval or reasoning process - the interactions among the nodes directly cause

changes in the states of nodes that produce the appropriate results.

The absence of an interpreter and the restriction on the nature of messages forces a strong

coupling between the nature of representation, the nature of inference that the representation is

expected to support, and the degree of efficiency with which these inferences have to be carried

out. This is not always the case in traditional approaches to knowledge representation where

there is a tendency to isolate control issues (also referred to as performance/implementation

issues) from issues of representation and expressiveness.

The coupling of issues related to content, organization, and inference, that results from adopt-

ing the connectionist framework, may seem misguided and at odds with conventional wisdom.

Why should one conflate issues that have been decoupled - especially when the decoupling leads

to a neat division of problems. It is indeed true that decoupling of issues serves an extremely

important pedagogical and analytical purpose. Our goal however, is not simply to understand

such systems, but to produce a detailed computational account of such systems. And in order

to achieve this goal it may be essential to blur these distinctions and adopt an unified approach.

Any representation is there for a purpose and the notion of a representation is meaningless unless

accompanied by the specification of the operations it supports and the acceptable complexity of

12

these operations. Thus understanding which inferences have to made efficiently - i.e., focusing

on performance issues - is essential for discovering the principles underlying the organization of

knowledge, and for making the correct ontological distinctions and choices.

A coupled approach to choosing representations is commonplace in computer science where

it is clearly understood that the development of efficient algorithms for solving a problem cannot

be decoupled from the development of associated data structures. In fact, the design of an

appropriate data structure is often the central step in the process. Once the "correct" data

structure is discovered, the algorithm follows by fiat.

4.2 A simple example to illustrate some issues in representation

We now consider a simple example that illustrates how the restriction on the nature of messages

and the absence of an interpreter affects the choice of representations.

Let objects in the domain we wish to represent have two intrinsic properties: color (with
values red and blue) and shape (with values square and circle), and let left-of be a binary relation

defined between objects. Let obj-1 and obj-2 be two objects in the domain such that obj-1 is a

red square, obj-2 is a blue circle, and obj- 1 is to the left of obj-2.

For simplicity we assume that the representation is only expected to support the following

simple operations:

" Retrieve an object given its (partial) description. For example, retrieve "obj-1" given "red

color" or given "red color and square shape".

• Retrieve the value of a specific property of a specified object. For example, retrieve the

color of obj-1 as "red".

" Test whether a given relational tuple is true or false. For example, test whether left-

of(obj-1, obj-2) is true or false.

Let us develop a simple connectionist representation for this domain. We begin by assuming

that the four property values red, blue, square, and circle are grounded in perception, and hence,

are primitive concepts (or microfeatures). Thus we represent each of these property values
with a distinct node (Fig. 4a). Each node is a processing element and sends out activation when

in an active state. One might suggest that the representation of obj-1 may be taken to be the

pattern 1010 - this being the pattern of activation over the set of property values (microfeatures)

corresponding to obj-1, and similarly, the representation of obj-2 may be taken to be the pattern

13

0101. Such a representation, however, is inadequate for a number of reasons that are outlined

below.

First, the proposed representation does not really represent the objects obj- 1 and obj-2; the

representation does not distinguish between patterns such as 1010 that correspond to objects

explicitly represented in the system, and patterns such as 1001 (a red circle) that correspond

to potential objects as yet unrepresented in the system. Moreover, the representation does not

provide any way of associating a name with a stored object. For example, it is not possible to

state that the pattern 1010 corresponds to the object obj-1. These are serious limitations because

given the description "red square" - i.e., given the pattern 1010 - the system will be unable to

recognize this pattern as being that of an existing concept - let alone recognize it as being the

object obj-1.

Another problem with the current representation is that it makes the representation of com-

posite concepts particularly difficult - if not impossible. The representation does not allow the

system to refer to objects except by their full descriptions and therefore the representation of a

composite object must include the full description of all its component parts. For example, as
the system can only refer to obj-1 and obj-2 by their complete descriptions, the representation of

left-oflobj-1, obj-2) will have to be left-oftred square, blue circle). Such a representation would

soon become untenable as one tries to describe progressively complex structures - specially, if

concepts have many more property values than two. 12

A simple solution to some of the problems listed above can be obtained by using the basic

idea of abstraction. This involves positing a separate node for each object explicitly represented
in the system and connecting such a node to all the property values of the corresponding object.

Thus we would augment the representation of obj-I by adding a node 'obj-l' and connecting it
to the nodes 'red' and 'square'. The same can be done for obj-2 (Fig. 4b). However, it must be

remembered that the node 'obj-l' does not in itself represent the red square: obj-1. It represents

obj-1 only by virtue of being connected to the nodes 'red' and 'square'; if we disconnect the
node 'obj-l' from the nodes 'red' and 'square', it ceases to represent obj-1 (or for that matter

anything else).

The above needs to be emphasized because a lack of appreciation of this point lies at the heart

of prevalent misconceptions about so called "localist" representations. The presence of a node

such as 'obj-l' provides a simple but effective way of distinguishing between the representation

of explicitly represented (memorized) concepts such as "the red square: obj-l" and potential
12We discussed the above representation in spite of its serious limitations because such "distributed representation"

schemes have been proposed and defended as viable representations [Rumelhart & McClelland 86]. See Section 7

14

objects such as "a red circle". It also makes it possible to recognize and name the description
"red square" as "obj-l". All we need to assume is that giving the description "red circle" amounts

to activating the nodes 'red' and 'square' which - by virtue of their connections - will activate

'obj-l' but leave 'obj-2' inactive.

Our design, however, is still incomplete. The representation in Fig. 4b does not allow us

to distinguish between a "red colored square shaped" object and a "red shaped square colored"

object. As far as the representation is concerned both are equivalent. Making this distinction is

crucial, particularly, as we expect the representation to handle the task of answering questions

such as "What is the color of obj-l?" (this is one of the tasks we set for the representation). In

response to this question we would like the system to say "red" (i.e., have the node 'red' active

without the node 'square' also becoming active). However, the system cannot do so with the

proposed representation. Starting with 'obj-l' there is simply no way of activating 'red' without
'square' also becoming active.

In a traditional semantic network the above problem does not arise because the links in the
network can be labeled. In a semantic network, the link between 'obj-l' and 'red' would be

labeled "has-color" and the link between 'obj-l' and 'square' would be labeled "has-shape"

(refer to Fig. 4b). During retrieval, an interpreter will read these labels and decide which link
is appropriate for the given task. If the task is to find the color of obj-l, the interpreter would

follow the link labeled "has-color" and arrive at the node 'red'.

In a connectionist network, however, we cannot have labels on links: this would amount

to sending messages that encode more than a strength of activation Yet we need a mechanism

that would allow messages from 'obj-l' to selectively reach 'red' - and not 'square' - whenever

the focus of attention is the color of 'obj-1'. This can be done in a straightforward manner

by introducing an extra node that would associate 'obj-l' and 'red' only in the context of the

property color, and 'obj-l' and 'square' in the context of the property shape.

A possible solution along the above lines is given in Fig. 5 (c.f. [Shastri 88]). The triangular

nodes - called binder nodes - provide the required context. Each binder node associates an object,

a property and a property value and becomes active on receiving simultaneous activation from a

pair of nodes. To find the color of obj-1, one would activate the nodes 'has-color' and 'obj-l'.

The binder node linking 'has-color' and 'obj-l' to 'red' will receive coincident activation along

two of its links and become active. As a result, it will transmit activation to 'red' which will

then become active. If we need to find an object that is red in color we would activate the

nodes 'has-color' and 'red'. This will cause the appropriate binder node to become active and

transmit activation to 'obj-l' which will become active, thus completing the retrieval. Finding

15

a "red square object" will involve activating the nodes 'red' and 'has-color' and 'square' and

'has-shape' which would also cause 'obj-l' to be become active.

Even the simple example being discussed here illustrates how the restriction on the nature

of messages and the absence of an interpreter forces certain ontological choices. For instance,

it becomes necessary to represent attributes of objects as property value pairs instead of as

features. Such a decision is not critical in an interpreted system; in such a system the fact
"obj-1 is red in color" could have been represented by encoding "red" as a feature of "obj-l" and

the information that "red is a color" could have been recorded separately. These two "isolated"

pieces of information could have put together by an interpreter during processing to ascertain

that the object is red in color.

The representation of relations can be derived by applying techniques - similar to those

outlined above. Fig. 6 illustrates how left-of(objl-obj2) may be represented. We posit a

generic node labeled 'left-of' connected to two role nodes - one for each role of the relation(role

nodes are depicted as diamond shaped nodes). The actual instance of left-of is represented

using the hexagonal instancer node labeled 'left-of-i'. This instancer node receives inputs from

the role nodes of 'left-of' and the corresponding fillers of the roles - in this case 'obj-l' and

'obj-2'. There is a link from 'left-of-l' to 'left-of. The instancer node performs the function

of associating the correct role filler pairs. One can see how activating the two roles of 'left-of'

and the nodes 'obj-l'and 'obj-2' will lead to the activation of the node 'left-of-l' and in turn

of 'left-of' indicating that left-of(obj-1,obj-2) has been asserted as an instance of the relation

left-of.

So far we have only considered the representation of relatively stable (long term) knowledge.

It is reasonable to assume that nodes such as 'obj-l' and 'left-of-l' exist (for example, they

might be learned over time) in order to represent stable grouping of constituents. However,

such a scheme is entirely inadequate if such groupings have to be created dynamically for short

durations. The need for establishing such dynamic short-term bindings clearly arises in language

understanding, vision, and reasoning. In fact it arises in any situation that involves reasoning

with representations that include the use of variables. In connectionist circles this problem is

referred to as the variable binding problem. 13 Consider the following example involving a

simple reasoning step. Assume that a network encodes the rule:

V(x,y) (HIT(x,y) =* HURT(y))

and facts such as HIT(John,Susan) and HIT(Tom,John) among others. HURT(John) clearly
13Some researchers have argued that it may be possible to exhibit interesting cognitive behavior without solving

the variable binding problem. For example see [Agre & Chapman 88].

16

follows from the above knowledge by instantiating the rule with the bindings "Tom" for "x" and

"John" for "y" and applying modus ponens. If a connectionist network is to infer HURT(John)
it must carry out an equivalent computation. In generic terms, it must have a way of activating

the representation of HURT() given the activation of the representation of HITO. Furthermore, it

must have a mechanism for establishing bindings for variables 'x' and 'y' in the representation

of HIT() and ensuring that the sr-ne bindings are induced in the representation of HURTO. The

problem gets even more confounded if we wish to chain such inference steps and the bindings

have to be propagated faithfully along the chain.

Note that any solution that requires such bindings to be pre-wired is unacceptable: prewiring

these bindings would correspond to explicitly representing all possible instantiations of the rule.

This is not feasible because the number of instantiations may be too numerous - potentially

unbounded. Thus we need the ability to set up these bindings on the fly. As we cannot use links

or nodes, it seems natural that we may have to use the temporal dimension to solve this problem,

and indeed, we have solved an interesting subclass of this problem usig time multiplexing (see

Section 6).

The examples discussed above are simple and serve to point out how the restriction that all

messages be scalar and the absence of a distinct interpreter, requires that representational and
inferential issues be coupled. In the Section 5 and 6 we look at two connectionist systems that

perform quite complex reasoning tasks over structured information.

4.3 Convergence

Parallelism does not guarantee speed. In order to support extremely efficient inference, the

spreading activation process must converge extremely fast. The computation performed by

many connectionist systems corresponds to a relaxation process wherein activation circulates in
a network until finally a stable network state is obtained. It is difficult to place an upper bound

on the convergence time of such systems and even in cases where it is possible to do so, it often
turns out to be polynomial in the size of the knowledge base [Derthick 88]. As explained in
Section 3.1, however, we require our encoding to be such that subparts of a connectionist network

that participate in the solution of a reflexive inference problem correspond to DAGs. Therefore,
it can be guaranteed that the system will converge in a constant number of sweeps of spreading

activation across the network. Thus the solution would be computed in time proportional to "he

diameter of the network which in most cases will be logarithmic in the siz. f ,c knuwiledge

17

base14 . An example of such a system is the connectionist semantic network reported in [Shastri
88] and the connectionist system for rule-based reasoning described in [Shastri & Ajjanagadde

89].

5 A connectionist semantic memory

Reasoning that may be characterized as inheritance and recognition (classification) within a
semantic network plays a central role in language understanding, visual recognition, and com-
monsense reasoning. Inheritance and recognition are also significant because humans can perform
these inferences effortlessly and extremely fast - to wit language understanding in real-time. A
connectionist semantic memory that can solve the inheritance and recognition problems with the
desired degree of efficiency has been proposed in [Shastri 88]. This work prescribes a mapping
from a formal specification at the knowledge level to a connectionist network that can solve
an interesting class of inheritance as well as recognition problems in time proportional to the
depth of the conceptual hierarchy. As the response time is only proportional to the depth of the
hierarchy, the system scales gracefully and can deal with large knowledge bases.

In addition to achieving efficient performance, adopting a connectionist approach to the
design of a semantic memory leads to two other advantages.

* Attempts at formalizing inheritance and recognition in semantic networks have been con-

founded by the presence of conflicting property-values among related concepts which gives
rise to the problems of exceptions and multiple inheritance during inheritance, and partial

matching during recognition. Several formalizations of inheritance hierarchies have been
proposed but none of them offer a uniform treatment of multiple inheritance as well as par-
tial/best matching based recognition. The connectionist approach suggested an evidential

formalization of conceptual knowledge that lead to a principled treatment of exceptions,
multiple inheritance, and recognition based on best/partial match.

* The work resulted in the identification of constraints on the conceptual structure that lead
to efficient solutions. One of these constraints was mentioned earlier in Section 3.1. (The
constraint specified that in order to inherit the value of some property P of a concept
C effectively, concepts that lie above C and that have information about P attached to

14For example, in the context of inheritance and recognition in a semantic network, the diameter corresponds to
the number of levels in the conceptual hierarchy, and is logarithmic in the number of concepts in the knowledge
base.

18

them, must form a tree.) Another constraint imposes a uniformity requirement on property
value attachments in the conceptual structure and suggests that the conceptual hierarchy

must comprise of several alternate "views" of the underlying concepts if information about

property values is to be used efficiently during recognition.

A detailed description of the system may be found in [Shastri 88], a brief specification of

the representation langauge is given below.

5.1 An evidential representation language

The knowledge in the semantic memory is expressed in terms of a partially ordered set of

concepts (i.e., a IS-A hierarchy of concepts) together with a partial specification of the property

values of these concepts. The set of concepts is referred to as CSET, the partial ordering as

<, and the information about property values of a concept is specified using the distribution

function 6, where, b(C, P) specifies how instances of C are distributed with respect to the

values of property P. For example, (APPLE, has-color) may be {RED = 60, GREEN =

55, YELLOW = 23... 1. Note that 6 is only a partial mapping; an agent may not know 6 for

many concept property pairs. In general, for a given C and P, an agent may know 6(C, P) only

if this information may prove useful in making inferences about C. In terms of a traditional

representation language, knowing 6(C, P) amounts to knowing - explicitly - the values of P

associated with C. For convenience we also make use of the # notittion. Thus, #C[P, V] equals

the number of instances of C that are observed by the agent to have the value V for property P

and #C[P 1 , V1][P 2, V2]...[Pn, V,,] = the number of instances of C observed to have the value V

for property P1, ... and value V,, for property P,,.

In terms of the above notation, the inheritance and recognition problem may be stated as

follows:

Inheritance: Given a concept C, a property P, and a set of property values X - {V1, V2, ...V,},

find a Vi that is the most likely value of property P for concept C. In other words, find V such

that the most likely value of #C[P, V] equals or exceeds the most likely value of #C[P, V]
for any other V in X. The inheritance problem: C = BIRD, P = mode-of-transportation,

and X = {FLY, SWIM, WALK}, may be paraphrased as: Is the mode of transportation of a

bird most likely to be flying, swimming, or walking?

Recognition: Given a set of concepts, Z = {C 1 , C2 , ...CI}, and a description consisting of

a set of property value pairs, i.e., DISCR = {[P 1 , V], [P2, V2], ...[P., Vm]}, find a C such that

relative to the concepts specified in Z, Ci is the most likely concept described by DISCR.

In other words, find Ci such that the most likely value of #C[P 1 ,VI], [P2, V2],...[Pm, 1]

19

exceeds the most likely value of #Cj[P, Vi], [P2 , V2],...[P, Vm] for any other Cj. If Z =

{APPLE, GRAPE), DISCR = {[has-color, RED], [has-taste, SWEET]} then the recog-

nition problem may be paraphrased as: "Is something red in color and sweet in taste more likely

to be an apple or a grape?"

The proposed connectionist system solves such inheritance and recognition problems in time

proportional to the depth of the conceptual hierarchy.

5.1.1 Constraints on the Conceptual Structure

The following terms will be used in stating the constraints:

Relevance: Given a concept C and a property P, a concept B is relevant to C with respect

to P, if and only if i) C < B (i.e, B lies "above" C in the partial ordering), ii) 6(B, P) is

known (i.e., distribution of instances of B with respect to values of property P is known) and

iii) there exists no other concept A between C and B for which 6(A, P) is known.

Projection: Given a concept C and a property P, CSET/C, P, the projection of CSET

with respect to C and P, is defined to be the set of all concepts Xi such that C < Xj and

6(Xi, P) is known. (I.e., the projection CSET/C, P is the set of all concepts above C whose

distribution with respect to the property values of P is known.)

The first constraint on the conceptual structure restricts the nature of the partial ordering

of concepts. This restriction is predicated by the nature of property-value attachment in the

conceptual structure.

Constraint-]: The conceptual structure must be such that the ordering induced by < on the

projection CSET/C, P results in a tree.

The above constraint does not require that all concepts be organized as a tree. It only requires

that given a property P, all concepts that have values of property P explicitly associated with

them should form a tree.

Before we state the second constraint we describe a particular conceptual structure that allows

this constraint to be expressed in a relatively simple manner. The proposed conceptual structure

also (trivially) satisfies Constraint-1 mentioned above.

In the proposed scheme (see Fig. 7), concepts are organized in a three tier structure. The top

most tier consists cf a pure taxonomy that classifies the domain concepts into several distinct

ontological categories. Such categories are derived using the principle of predicability, [Keil

79, Sommers 65] which says that different sorts of things have different sorts of properties

applicable to them, and one may classify things according to the predicates that appl), or do not

apply, to them. Sommers has argued that ontological categories should form a strict taxonomy.

20

The third or the lowest tier of the conceptual structure consists of instances. The second tier

consists of a number of taxonomies called views. The root of a view is a leaf of the ontological

tree, and the leaves of a view are instances. Multiple views may be defined with the same

leaf of the ontological tree as their root and therefore, there may be multiple views that have

the same instance as one of their leaves. Thus instances may have multiple parents, however,

each parent must lie in a distinct view. The above organization offers advantages permitted by

tangled hierarchies by allowing instances to have multiple parents, but retains certain tree like

characteristics that helps in simplifying the interactions between information represented in the

conceptual structure and eventually leads to a parallelizable solution.

Constraint-2: If 6(Ci, P) - i.e., distribution of instances of Ci with respect to property P -

is known for some concept Ci in view H, then 6(C, P) should be known for as many concepts

in H as may be necessary to ensure that given any token T under H, there exists a concept Bj

in H that is relevant to T with respect to P.

Constraint-2 requires that if information about some property is stored within a view then such

information must be stored at a sufficient number of concepts (sufficient in the sense specified

in the constraint). This constraint also suggests that if a property value (or a cluster of property

values) can be used to discriminate among a set of instances but is of no special significance as

far as members outside this set are considered, then one must define a distinct view over this set

of instances so that information about this property value may be used efficiently.

If either of the constraints mentioned above is violated, the system will produce anomalous

results. These and other issues are discussed at length in IShastri 88].

6 A connectionist system for rule-based reasoning

The connectionist semantic network described above is capable of representing long term and

stable relationships and bindings. However, it does not address the problem of maintaining and

propagating dynamic or short-term bindings. For the sake of clarity if we suppress the evidential

aspect of reasoning in the system, the system deals with rules of the form

V(x)P(x) =: Q(X)

and

V(J')P(r) =: Q(X,a)

Although multiple rules pqrticipwP in a derivation, it is always the case that all variables are

bound to the same individual and thus the system can get by without actually solving the dynamic

binding problem.

21

I II I I I In I P

The need for establishing dynamic and temporary bindings clearly arises in inference that in-

volves variables and multi-place predicates. Consider the following example. Assume that a net-

work encodes the rule: Vx, y [HIT(x, y) = HUIiT(yl] and facts such as HIT(John, Mary)

and HIT(Tom, John) among others. HURT(John) clearly follows from the above knowl-

edge by instantiating the rule with the bindings John for y and applying modus ponens. If the
network is to infer HURT(John) it must carry out an equivalent computation. In generic

terms, it must have a way of activating the representation of HURT given the activation of the
representation of HIT. Furthermore, it must have a mechanism for establishing bindings for

variables x and y in the representation of HIT and ensuring that the same bindings are induced
in the representation of HURT. The problem gets even more confounded if we wish to chain

such inference steps and the bindings have to be propagated faithfully along the chain.
Any solution that requires that such bindings be pre-wired is unacceptable: prewiring these

bindings would correspond to explicitly representing all possible instantiations of the rule (this
would also mean that the system is only dealing with propositions not with quantified sentences
involving variables!). This is not feasible because the number of instantiations may be too many
- potentially unbounded. Thus we need the ability to set up these bindings on the fly. This

problem has received considerable attention recently (see [Touretzky & Hinton 88] [Smolensky

87][Dolan & Dyer 881 [Shastri & Ajjanagadde 89]). The latter have suggested a connectionist
system that can perform a broad class of deductive inference involving variables and multi-place

predicates with extreme efficiency. Specifically, the system can represent knowledge expressed
in the form of rules and facts and determine whether a given query follows from the facts and

rules encoded in the system. If the argument structure of the rules satisfies certain constraints

(these are specified in [Shastri & Ajjanagadde 89]), the system responds to queries in optimal

time, i.e., the time taken to draw an inference is just proportional to the lrtigth of the proof.

The system maintains and propagates several variable bindings over long chains of inference by

using a phased clock.

Rules in the system are assumed to be sentences of the form

w -, r,,,,P1(...) A P2(...)... A P, Vyl,. yk3z, ...:,Q(...)]

where arguments for P,'s are subsets of {x, x2. .m}, while the arguments of Q may consist

of any number of arguments from among the x,'s and any number of constants besides the

universally and existentially quantified arguments introduced in the consequent. Notice that the

more commonly occurring rules of the form

, , ...),,,P2(... A P, ^ t, Q (...)2

22

- where every variable occurring in a rule is universally quantified with the scope of quantifi-

cation being the entire implication - are just a special case of the more general form specified

above. Facts are assumed to be atomic formulas of the form P(t 1 ,t 2 ... t.) where t,'s are either

constants or (existentially or universally) quantified variables. A query is an atomic formula

whose arguments are either bound to constants or are existentially quantified variables. Some

examples of rules, facts, and queries follow:

Rules:

VX, y, z give(r, y, z) -+ owns(y, z)

Vx,y owns(x,y) -+ can - scll(x,y)

Vx orniprescnt(x) --+ Vy, t p7'csC-it(x, Y,)

Vx, y born(x, y) --4 3t presct(x, y,t)

Vx triangle(x) -+ number-of -sidcs(x, 3)

Vx, y .sibling(x, y) A borr-at-the-. art-tirr(.r, y) --. tiu'r.s(T ,

Facts:

give(John, M'ary, Book 1); John gave Mary Book 1.

give(x, Susan, Ball2); Someone gave Susan Ball2.

ontmniprcsent(x); There exists someone who is omnipresent.

triangle(A3); A3 is a triangle.

Queries:

1. owns(Mary,Bookl); Does Mary own Bookl?

2. owns(x, y); Does someone own something?

3. can-sell(x, Ball2); Can someone sell Ball2?

4. pre'sent(r, Northpole, 1/1/89); Is someone present at the north pole on I/1/89?

5. number-of-sides(A3,4); Does A3 have 4 sides?

6. cati-sell(Mary, B(ll2); Can Mary sell Bal12?

All queries except 5 and 6 follow from the rules and facts and the system answers yes to

these queries.

As discussed in Section 3. 1, the efficiency requirement imposed by reflexive reasoning entails

that the inferential dependencies in the knowledge base be acyclic. In graphical terms what this

means is that if we depict each predicate by a unique node and for every rule

P,(...) A P2(...)... A P,, (...) ---> Q (-.)

in the knowledge base, if we draw directed arcs from the nodes Ps to the node Q, then the

resulting graph must be acyclic. This restriction - although quite strong - does allow us to

capture a broad range of common sense reasoning situations. For example, it admits restricted

23

types of causal reasoning - reasoning about actions and events wherein there is no circular

causality. It also admits terminological reasoning, i.e., reasoning with definitional knowledge of

concepts/terms [Ajjanagadde 901.

7 Distributed v/s localist representations

Most of the discussion in this paper was carried out in the context of a particular b-Ind of

connectionism, namely, structured connectionism (aka the localist approach to connectionism).

The structured approach is to be contrasted with other brands of connectionism that subscribe

to the view that intelligent behavior is an emergent property of a large (unstructured) ensemble
of simple processing elements. Distributed representation schemes (as against localist schemes)

represent a concept as a paLtern of activity over a large number of nodes (microfeatures). In

[Feldman et al. 88] it has been pointed out that distributed representations suffer from several

problems: "cross-talk, communication, invariance, and the inability to capture structure". We
faced several of these problems in the process of developing the representation of a simple domain
in Section 4.2 and it is clear that truely distributed representation schemes are inadequate. Some

distributed representation schemes such as those proposed in rnumelhart & McClelland 861 work
fine for representing an unstructured set of (unstructured) objects. However, from the point of
view of Al, the problem of representing a set of entities is of minimal interest. At the least, we

require that a knowledge representation system be capable of representing a set of (structured)

entities together with some relations defined over these and also support limited retrieva! and
inferential operations on this knowledge.

Imagine a distributed representation of a domain consisting of the entities: a and b, and

relation: same defined by the tuples (a,a) and (b,b). Compare the representations of a, b, and

same(a,a) in such a distributed representation. Clearly, we cannot have the representation of
a be a pattern ranging over the entire set of nodes and at the same have the representation of
same(a,a) also be a pattern ranging over the entire set of nodes. It turns out that a meaningful

representation would require a four way partitioning of nodes: one group (ROLE I) to represent
the first role of a relation, another (ROLE2) to represent the second role of a relation, a third

(REL) to represent the different relations defined over the set of entities, and a fourth to control

the association of patterns between the other three groups of nodes [Hinton 81]. However,

there are problems even with the above semi-distributed scheme. Consider the representation

of same(a,a). For complete generality, let us assume that same(a,a) is represented by a pattern

a' in partition ROLE1, pattern a" in partition ROLE2 (the patterns in the other two partitions

24

are not important here). How should the patterns a' and a" compare among themselves and

with the representation of a in other parts of the system? Should a' and a" be identical? If so

how does the system enforce that these two representations of a - occurring in different parts of

the network - are identical? If not, how does the rest of the system understand that these two

patterns refer to the same entity and how does the system relate these two different patterns to

the representations of a in other parts of thL_ network. Finally, is there a canonical representation

of a somewhere in the system? Questions such as those raised above need to be answered

carefully.

At one level, the only difference between a distributed representation and the localist rep-

resentation is that localist representations use abstraction - a fundamental notion in computer

science. Thus for every concept, localist representauons posit an ,-tditioral 'focal' node that is

connected to all the microfeatures of the concept. The 'focal' node in itself does not represent the

concept, in fact, by itself it does i ot represent anything. A 'focal' node acquires meaning solely

by virtue of its connections to the nodes representing the microfeatures of the associated concept

and to the 'focal' nodes of other concepts the associated concept is related to This difference

may seem unimportant but turns out to be critical for representing structured know ledge

8 Conclusion

In this paper we have argued that one can offer a computational account of reflexive inference

while working within the traditional framework by properly understanding the coupling between

representation and inference, determining appropriate organizational principles for structunng

knowledge, and identifying the features required of in architecture appropriate for realizing

the required representation and computations. Connectionism appears to be the appropriate

computational framework for achieving this goal. Some tangible progress towards this end has

been made and it appears that connectionism will play a key role in the development of a detailed

and computationally effective model of reflexive inference

25

1References

[Agre & Chapman 88jAgre, P.E. & D. Chapman. Indexicality and the Binding Problem.
Presented at the Symposium "How Can Slow Components Think So Fast?" Stanford,
1988.

(Aijanagadde 90] Ajjanagade V. Forthcoming Ph.D. dissertation. University of
Pennsylvania, 1990.

[Cottrell 85] Cottrell, G.W. A connectionist approach to word-sense disamrbiguation.
Ph.D. Dissertation, Dept. of Computer Science, University of Rochester, 1985.

(Derthick 88]Derthick. M., Mundane reasoning by parallel constraint satisfaction, Ph.D.
thesis. CMU-CS-88-182. Carnegie Mellon University, Sept ! 988.

[Dolan & Dyer 88]Dolan, C., and Dyer. M.. Parallel retrieval and application of
conceptual knowledge. Technical Report TR UCLA-AI-88-3. University of California. Los
Angeles, Jan. 1988.

(Fodor & Pylyshyn 88] Fodor J.A. and Pylyshyn ZW Connectionism and cognitive
architecture A cnitical analysis. In Connections and Symb~ols Steven Pinker and
Jacques Mehier (ods.) The MIT Press, Cambridge. MA. 1988.

[Frish & Allen 82] Frisch. A M and JF. Allen. Knowledge retnieval as limited inference in
D.W. Loveland (Ed.), Lecture Notes in Computer Science: 6th Conference on
Automated Deduction. Spnnger-Verlag, New Yo*1. 1982

[Hnton 81] Hinton, G.E Implementing Semantic Network1s in Parallel Hardware. In
Parallel Models of Associative Memory G E Hinton and J A. Anderson (Eds.) Lawrence
Eribaum Associates. Hillsdale, NJ. 1981

[Keil 79] Keil. FC Semantic and conceptual development. Cambridge, MA Harvard
University Press

[Levesque 89] Levesque. H Logic and Complexity of Reasoning KRR-TR-89-2.
Computer Science Department, University of Toronto

,Lakemneyer 87] Lakemneyer G Tractable meta-reasoning in propositional logics of
belief In Proc IJCAi-67"Milano, Italy. 1967 pp 402-408

fR. melhari & McClelland 8,6]Rurnelhart. D E & J L McClelland. (Eds) Parallel
Dr stnbuted Processing Explorations in the Micro structure of Cognition Vol
I Cambridge. MA Bradford Books'MIT Press

,Schubevl 89] Schuberl, L K An Eoisodic Knowledge Represeniation for Narrative
Texts To appear in Proc KR-89- Toronto Canada

lShastn 88] Shastin. L Semantic Networt~s An evidentia; form'alization and its
connecriontst realizatton London Pitman t-os Altos Morgan Kailman 4, 98.8

[Shastri & Ajanagadde 89] Shastri, L. & V. Ajjanagadde. "A connectionist system for
logical inference with multi-place predicates and variable bindings". Technical Report
MS-CS-89-06. Computer and Information Science Department, University of
Pennsylvania, Jan. 1989.

[Smolensky 87] Smolensky, P., On variable binding and the representation of symbolic
structures in connectionist systems, Technical Report CU-CS-355-87, Department of
Computer Science, University of Colorado at Boulder, Feb. 1987.

[Sommers 65] Sommers, F. (1965). Predicability. In Philosophy in America (ed.)
M. Black. Ithaca, NY: Cornell University Press.

[Touretzky & Hinton 88] Touretzky, D. and Hinton, G., A Distributed Connectionist
Production System. Cognitive Science 12(3), pp 423-466.

PESON ~ NON has-belief
PACIFISM PERSON

as-belief
PACIFIST

RL tB REPUB OLAJ(ER has-belief PACIFISM

is-a link

i ija property-value

is-not-a link

property attachment class/concept

Fig. 1 Two representations: A "class-only" system and a "class-property" system.

Pszsw

REL-PIER POL-PER

ZORAS CHRIST

I \

mow QUAK REPUIBO mmoc

RICK PAT DICK

Fig. 2 A tangled conceptual hierarchy

L

Fig. 3 The subpraph relevant to the inheritance problem: Is Dick a pacffist or a

non-pacilh?

Fig. 4a An unstructured representation of Obj-1 and obj-2

Iobj-2 obj-1'e sure'obi- 1

obj-2 'blue circle'

jBLUE CIRCLE

Fig. 4b Grouping properties of objects using focal nodes.

Triangular nodes such as bl am binder nodes.

obj-1: 'red square'

obj-2: 'blue circle'

Fig. 5 Representing structured objects using binder nodes-

to obj-1

I e f t -o f

to obj-2

left -of (a, b)

Fig. 6 A representation of left-of(obj- I.obj-2)

()root

tier 1 ontological tree

tier 2

Ii Clq ~HkI ... HkqjH . ,q

til tim1 tk1 tk. t

tll ..., tm,, are tokens.

A token may have multiple parents but at most one parent per view.
w,..... w, are leaves of the ontological tree.
Hi, H,,, are q, views defined over tokens of ontological type w,.

Fig. i 7 The multiple views organization

